
£5

By Karen N. Johnson

When we’re testing a mobile
application, most of our focus
is centered directly on testing
the application. But there are
other considerations surround-
ing our applications to consider
such as the installation of the
application, on-going phone
and application upgrades, as
well as how our application
interacts with other variables in
the mobile environment. There
are still more variables includ-
ing firmware upgrades, memory
card space issues and device
permissions and settings. If
you’ve been in software testing
for a long time, these ideas
(install, upgrade and interaction
testing) seem familiar, even a
bit like déjà vu. How would
something new such as mobile
seem old and familiar?
	 Back in the days of
client server application testing,
we had to think about installa-
tion testing. In the past decade,
we’ve been primarily focused
on web testing where installa-
tion testing is rarely needed.
But in the 1990’s we were
focused on desktop software
and how gracefully applications
could live and perform in a PC
environment. ≠For a stretch of
time, I worked on a Windows
application and I spent a fair
amount of time concerned
about Microsoft DLL’s, I wrote
an article about installation test-
ing and even wrote a blog post
entirely focused on DLL hell.
DLL hell is an actual term (not
just an experience); take a

Continued on page 4

By Seth Eliot

Hey, want to know the future? OK,
here it is:

•	 Testing in Production with real
users in real data Centres will be
a necessity for any high perform-
ing large scale software service.

•	 Testers will leverage the Cloud to
achieve unprecedented effective-

ness and productivity.
•	 Software development organisa-

tions will dramatically change
the way they test software and
how they organise to assure soft-
ware quality. This will result in
dramatic changes to the testing
profession.

Is this really the future? Well, maybe.
Any attempt to predict the future will

almost certainly be wrong. What we
can do is look at trends in current
changes - whether nascent or well on
their way to being established practice
- and make some educated guesses.
	 Here we will cover Testing in
Production. The other predictions will
be explored in subsequent editions of
Testing Planet.

Continued on page 2

ALSO IN THE NEWS

BUILDING APPS FOR
SOCIAL GOOD
If you were thinking of
designing or building a
website, you’d be in luck...
Continued on page 5

THE EVIL TESTER
QUESTION TIME
More provocative advice
for testers who don’t
know what to do!
Continued on page 32

7 CHANGES SCRUM
HAS MADE TO TESTING
In the last decade, Agile
methods went from
quirky and novel to...
Continued on page 29

The mobile
environment

Finding the best tester for the job

BITBEAMBOT - THE
TESTING ROBOT
Can your robot play Angry
Birds? On an iPhone?
Mine can. I call it...
Continued on page 14

The future of software testing
Part one - Testing in production

October 2011 | www.thetestingplanet.com | No: 6

Testing the tester - a short story about practical recruiting methods for testers - see page 22

Changes that are out of this world - what does the future hold for the profession of testing?

www.softwaretestingclub.com

5Follow us at www.twitter.com/testingclub

The Software Testing Job Board is the place for awesome jobs and software testers - http://jobs.softwaretestingclub.com

Building mobile applications
for social good
By Ken Banks

If you were thinking of designing or building a
website, you’d be in luck. If you were thinking
of writing a suite of financial management soft-
ware, you’d be in luck. If you were even thinking
of creating the next big video game, you’d be in
luck. Visit any good bookstore and the selection
of self- help books and “how-to” guides leave you
spoilt for choice. People have been working on
these things for ages, and good and bad practice
in website, financial software or games develop-
ment – among many others – is well established.
The biggest challenge you’d likely face is deciding
which book to choose. If you’re anything like me
you’ll leave the store with at least a couple.
	 Unlike the plethora of self-help guides on
the more established topics, if you were looking
to do something with mobile phones you’d likely
have mixed results. There are plenty of books
available extolling the virtues of Java, Python,
Ruby, Ruby on Rails, C++, Symbian, Android
and just about any other development environ-
ment or platform out there. Combine that with the
growing field of mobile UI (user interface) design
and you’d think that pretty much everything was
covered. But there is one thing missing, although
you’d probably only notice if you’re one of a
growing number of developers turning their atten-
tion to the developing world.

	 Building software aimed at helping people
solve problems in the developing world is some-
thing we’ve spent the best part of the last six years
doing. It’s been a particularly exciting time in
mobile, with phones working their way into the
hands of rural communities the world over, many
of whom previously had no method of electronic
communication. The opportunities this has opened
up have not gone unnoticed, and the non-profit
community as much as the commercial world have
been keen to understand and take advantage. In
this article I’d like to share a few of the lessons
we’ve learnt as part of our journey, starting with
a few myths and misconceptions, all of which I
believe need busting.

“High-end is better than low-end”

Firstly, one mobile tool should never be described
as being better than the other – it’s all about the
context of the user. There is just as much need for
a $1 million server-based, high bandwidth mobile-
web solution as there is for a low-cost, SMS-only
PC-based tool. Both are valid. Solutions are needed
all the way along the “long tail“ (http://www.kiwan-
ja.net/blog/2009/01/a-glimpse-into-social-mobiles-
long-tail/),and users need a healthy applications
ecosystem to dip into, whoever and wherever they
may be. Generally speaking there is no such thing
as a bad tool, just an inappropriate one.

“Don’t bother if it doesn’t scale”

Just because a particular solution won’t ramp-up
to run an international mobile campaign, or health
care for an entire nation, does not make it irrele-
vant. Just as a long tail solution might likely never
run a high-end project, expensive and technically
complex solutions would likely fail to downscale
enough to run a small rural communications
network. Let’s not forget that a small deployment
which helps just a dozen people is significant to
those dozen people and their families.

“Centralised is better than distributed”

Not everything needs to run on a mega-server
housed in the capital city and accessed through the
cloud. Okay, storing data and even running appli-
cations – remotely – might be wonderful techno-
logically, but it’s not so great if you have a patchy
internet connection, if you have a connection at
all. For most users, centralised means “remote”,
while distributed means “local”.

“Big is beautiful”

Sadly there’s a general tendency to take a small-
scale solution that works and then try to make

Continued on page 6

www.twitter.com/testingclub
http://jobs.softwaretestingclub.com
http://www.kiwanja.net/blog/2009/01/a-glimpse-into-social-mobiles-long-tail/
http://www.kiwanja.net/blog/2009/01/a-glimpse-into-social-mobiles-long-tail/
http://www.kiwanja.net/blog/2009/01/a-glimpse-into-social-mobiles-long-tail/

6 October 2011 | www.thetestingplanet.com | Use #testingclub hashtag

When a virtually flawless application is delivered to a customer, no one says how well tested it was. Development teams will always get
the credit. However, if it is delivered with bugs, everyone will wonder who tested it! - bhawin

Continued from page 5

a really big version of it. One large instance of
a tool is not necessarily better than hundreds of
smaller instances. If a small clinic finds a tool to
help deliver health care more effectively to two
hundred people, why not simply get the same tool
into a thousand clinics? Scaling a tool changes its
DNA, sometimes to such an extent that everything
that was originally good about it is lost. Instead,
replication is what’s needed.

“Tools are sold as seen”

I would argue that everything we see in the social
mobile applications ecosystem today is “work in
progress”, and it will likely remain that way for some
time. The debate around the pros and cons of differ-
ent tools needs to be a constructive one – based on a
work in progress mentality – and one which posi-
tively feeds back into the development cycle.

“Collaborate or die”

Although collaboration is a wonderful concept, it
doesn’t come without its challenges – politics, ego
and vested interests among them. There are moves
to make the social mobile space more collabora-
tive, but this is easier said than done. 2011 will
determine whether or not true non-competitive
collaboration is possible, and between who. The
more meaningful collaborations will be organic,
based on needs out in the field, not those formed
out of convenience.

“Appropriate technologies are
poor people’s technologies”

A criticism often aimed more broadly at the appropri-
ate technology movement, locally-powered, simple
low-tech-based responses should not be regarded
as second best to their fancier high-tech ‘Western’
cousins. A cheap, low-spec handset with five days
standby time is far more appropriate than an iPhone
if you don’t live anywhere near a mains outlet.

“No news is bad news”

For every headline-grabbing mobile project, there
are hundreds – if not thousands – which never make
the news. Progress and adoption of tools will be slow
and gradual, and project case studies will bubble
up to the surface over time. No single person in the
mobile space has a handle on everything that’s going
on out there.

“Over-promotion is just hype”

Mobile tools will only be adopted when users get
to hear about them, understand them and have easy
access to them. One of the biggest challenges in the
social mobile space is outreach and promotion, and
we need to take advantage of every opportunity to
get news on available solutions – and successful
deployments – right down to the grassroots. It is our
moral duty to do this, as it is to help with the adop-
tion of those tools that clearly work and improve
people’s lives.

Ken Banks, founder
of kiwanja.net,
devotes himself to
the application of
mobile technology
for positive social
and environmental
change in the
developing world,
and has spent
the last 19 years
working on projects in Africa. His early
research resulted in the development
of FrontlineSMS, an award-winning text
messaging-based field communication
system aimed at grassroots non-profit
organisations. Ken graduated from
Sussex University with honours in Social
Anthropology with Development Studies,
was awarded a Stanford University Reuters
Digital Vision Fellowship in 2006, and
named a Pop!Tech Social Innovation Fellow
in 2008. In 2009 he was named a Laureate
of the Tech Awards, an international
awards program which honours innovators
from around the world who are applying
technology to benefit humanity. He was
named a National Geographic Emerging
Explorer in May 2010 and an Ashoka Fellow
in 2011, and is the recipient of the 2011
Pizzigati Prize for Software in the Public
Interest. Ken was also a member of the UK
Prime Minister’s delegation to Africa in July
2011. His work was initially supported by
the MacArthur Foundation, and he is the
current recipient of grants from the Open
Society Institute, Rockefeller Foundation,
HIVOS, the Omidyar Network and the
Hewlett Foundation. Further details of Ken’s
wider work are available on his website at
www.kiwanja.net

AUTHOR PROFILE - KEN BANKS

“Competition is healthy”

In a commercial environment – yes – but saving
or improving lives should never be competitive.
If there’s one thing that mobile-for-development
practitioners can learn from the wider develop-
ment and ICT4D community, it’s this.
	 So, you’ve come up with the next big idea
to cure malaria or solve the global food crisis.
What next? Historically many developers have
shown a general tendency to dive straight into
programming, but in reality this is one of the last
things you should be doing. Here are a few tips
we’ve collected over the years on how to best go
about validating your idea, and then how to best
go about developing it (should you still decide to).
	 Firstly, think carefully if you’re about
to build a solution to a problem you don’t fully
understand.

	 Check to see if any similar tools to the
one you want to build already exist and, if they do,
consider partnering up. Despite the rhetoric, all
too often people end up reinventing the wheel.
	 Be flexible enough in your approach to al-
low for changing circumstances, ideas and feed-
back. Don’t set out with too many fixed param-
eters if you can help it.
	 From the outset, try to build something
that’s easy enough to use without the need for user
training or a complex manual, and something which
new users can easily and effortlessly replicate once
news of your application begins to spread.
	 Think about rapid prototyping. Don’t
spend too much time waiting to build the per-
fect solution, but instead get something out there
quickly and let reality shape it. This is crucial if
the application is to be relevant.
	 Never let a lack of money stop you. If con-
siderable amounts of funding are required to even get
a prototype together, then that’s telling you some-
thing – your solution is probably overly complex.
	 Learn to do what you can’t afford to
pay other people to do. The more design, cod-
ing, building, testing and outreach you can do
yourself, the better. Stay lean. These tasks can be
outsourced later if your solution gains traction and
attracts funding. The more you achieve with few
resources and the more commitment and initiative
you show will increase the chances a donor will be
attracted to what you’re doing.
	 Don’t be too controlling over the solu-
tion. Build an application that is flexible enough to
allow users, whoever and wherever they may be,
to plant their own personalities on it. No two rural
hospitals work the same way, so don’t build an ap-
plication as if they did.
	 Think about building platforms and tools
that contribute to the solution for the users, rather
than one which seeks to solve and fix everything
for them. Let them be part of it. Think about how
your imported solution looks to a local user. Are
they a passive recipient of it, or can they take it
and turn it into their solution? A sense of local
ownership is crucial for success and sustainability.
	 Ensure that the application can work on
the most readily and widely available hardware
and network infrastructure. Text messaging solu-
tions aren’t big in the social mobile space for noth-
ing. And, for the time being, try to avoid build-
ing applications that require any kind of Internet
access, unless you want to restrict your target
audience from the outset.
	 Every third party the user needs to speak
to in order to implement your solution increases the
chances of failure by a considerable margin, particu-
larly if one of those parties is a local mobile operator.
	 Be realistic about what your application
can achieve, and wherever possible look for low
hanging fruit. Remember – big is not better, small
is beautiful, and focus is king. A solid application
that solves one element of a wider problem well
is better than an average application that tries to
solve everything.
	 Bear in mind that social mobile solutions
need to be affordable, ideally free. Business models,

Continued on page 7

www.kiwanja.net

7Follow us at www.twitter.com/testingclub

What motivates scientists is a lack of info rather than the presence of info. Which is also true for testers. #thecanon #testing - @ruudcox

Continued from page 6

if any, should be built around the use of the appli-
cation, not the application itself. Easier said than
done, so try to engage business studies graduates
at universities, many of who are always looking
for cool social-change projects to work on.
	 Leverage what local NGOs (or users) are
best at, and what they already have – local knowl-
edge, local context, local language and local trust
among local communities. Remember that it’s
unlikely you will ever understand the problem as
much as they do, and that it’s always going to be
easier to equip them with tools to do the job than it
will ever be for you to learn everything they know.
	 Don’t waste time or energy thinking too
much about the open sourcing process (if you

decide to go that route) until you know you have
something worth open sourcing. (And, by the way,
the users will be the ones to let you know that).
	 Don’t build an application for an envi-
ronment where it may politically (or otherwise)
never be adopted. For example, a nationwide
mobile election monitoring system would need
government buy-in to be implemented. Govern-
ments that commit election fraud to stay in power
are unlikely to adopt a technology that gives the
game away.
	 Consider controlling distribution and use
of your application at the beginning. Not only is
it a good idea to be able to contact users for feed-
back, donors will almost always want to know
where it is being used, by whom and for what.
Neglect to collect this data at your peril.

	 Promote your solution like crazy. Reach
out to people working in the same technology
circles as you, post messages on relevant blogs,
blog about it yourself, build a project website, try
and brand your solution, and make use of social
networking tools such as Twitter and Facebook.
Although your target users may not be present,
many are likely to be fairly resourceful, and the
more people talking about your solution the more
likely news is to filter down to them.
	 Finally, build a community around the
application, encourage users to join and share
experiences, and to help each other. Don’t be
afraid to reach out for additional information, and
work hard to keep it active, engaging and grow-
ing. Communities are notoriously hard to build,
but when they work they’re worth it. □

www.twitter.com/testingclub

